58 research outputs found

    Opinion dynamics with backfire effect and biased assimilation

    Get PDF
    The democratization of AI tools for content generation, combined with unrestricted access to mass media for all (e.g. through microblogging and social media), makes it increasingly hard for people to distinguish fact from fiction. This raises the question of how individual opinions evolve in such a networked environment without grounding in a known reality. The dominant approach to studying this problem uses simple models from the social sciences on how individuals change their opinions when exposed to their social neighborhood, and applies them on large social networks. We propose a novel model that incorporates two known social phenomena: (i) Biased Assimilation: the tendency of individuals to adopt other opinions if they are similar to their own; (ii) Backfire Effect: the fact that an opposite opinion may further entrench someone in their stance, making their opinion more extreme instead of moderating it. To the best of our knowledge this is the first DeGroot-type opinion formation model that captures the Backfire Effect. A thorough theoretical and empirical analysis of the proposed model reveals intuitive conditions for polarization and consensus to exist, as well as the properties of the resulting opinions

    On Measuring Bias in Online Information

    Get PDF
    Bias in online information has recently become a pressing issue, with search engines, social networks and recommendation services being accused of exhibiting some form of bias. In this vision paper, we make the case for a systematic approach towards measuring bias. To this end, we discuss formal measures for quantifying the various types of bias, we outline the system components necessary for realizing them, and we highlight the related research challenges and open problems.Comment: 6 pages, 1 figur

    Opinion dynamics with backfire effect and biased assimilation

    Get PDF
    The democratization of AI tools for content generation, combined with unrestricted access to mass media for all (e.g. through microblogging and social media), makes it increasingly hard for people to distinguish fact from fiction. This raises the question of how individual opinions evolve in such a networked environment without grounding in a known reality. The dominant approach to studying this problem uses simple models from the social sciences on how individuals change their opinions when exposed to their social neighborhood, and applies them on large social networks. We propose a novel model that incorporates two known social phenomena: (i) \emph{Biased Assimilation}: the tendency of individuals to adopt other opinions if they are similar to their own; (ii) \emph{Backfire Effect}: the fact that an opposite opinion may further entrench someone in their stance, making their opinion more extreme instead of moderating it. To the best of our knowledge this is the first model that captures the Backfire Effect. A thorough theoretical and empirical analysis of the proposed model reveals intuitive conditions for polarization and consensus to exist, as well as the properties of the resulting opinions

    Global similarity and local divergence in human and mouse gene co-expression networks

    Get PDF
    BACKGROUND: A genome-wide comparative analysis of human and mouse gene expression patterns was performed in order to evaluate the evolutionary divergence of mammalian gene expression. Tissue-specific expression profiles were analyzed for 9,105 human-mouse orthologous gene pairs across 28 tissues. Expression profiles were resolved into species-specific coexpression networks, and the topological properties of the networks were compared between species. RESULTS: At the global level, the topological properties of the human and mouse gene coexpression networks are, essentially, identical. For instance, both networks have topologies with small-world and scale-free properties as well as closely similar average node degrees, clustering coefficients, and path lengths. However, the human and mouse coexpression networks are highly divergent at the local level: only a small fraction (<10%) of coexpressed gene pair relationships are conserved between the two species. A series of controls for experimental and biological variance show that most of this divergence does not result from experimental noise. We further show that, while the expression divergence between species is genuinely rapid, expression does not evolve free from selective (functional) constraint. Indeed, the coexpression networks analyzed here are demonstrably functionally coherent as indicated by the functional similarity of coexpressed gene pairs, and this pattern is most pronounced in the conserved human-mouse intersection network. Numerous dense network clusters show evidence of dedicated functions, such as spermatogenesis and immune response, that are clearly consistent with the coherence of the expression patterns of their constituent gene members. CONCLUSION: The dissonance between global versus local network divergence suggests that the interspecies similarity of the global network properties is of limited biological significance, at best, and that the biologically relevant aspects of the architectures of gene coexpression are specific and particular, rather than universal. Nevertheless, there is substantial evolutionary conservation of the local network structure which is compatible with the notion that gene coexpression networks are subject to purifying selection
    • …
    corecore